Structure–Activity Relationship Studies on a Series of 3α-[Bis(4-fluorophenyl)methoxy]tropanes and 3α-[Bis(4-fluorophenyl)methylamino]tropanes As Novel Atypical Dopamine Transporter (DAT) Inhibitors for the Treatment of Cocaine Use Disorders



DOI:10.1021/acs.jmedchem.7b01454.s004, Dimensions: 5690437,



  1. (1) National Institute on Drug Abuse, grid.420090.f
  2. (2) University of Copenhagen, grid.5254.6, KU


The development of medications to treat cocaine use disorders has thus far defied success, leaving this patient population without pharmacotherapeutic options. As the dopamine transporter (DAT) plays a prominent role in the reinforcing effects of cocaine that can lead to addiction, atypical DAT inhibitors have been developed that prevent cocaine from binding to DAT, but they themselves are not cocaine-like. Herein, a series of novel DAT inhibitors were synthesized, and based on its pharmacological profile, the lead compound 10a was evaluated in phase I metabolic stability studies in mouse liver microsomes and compared to cocaine in locomotor activity and drug discrimination paradigms in mice. A molecular dynamic simulation study supported the hypothesis that atypical DAT inhibitors have similar binding poses at DAT in a conformation that differs from that of cocaine. Such differences may ultimately contribute to their unique behavioral profiles and potential for development as cocaine use disorder therapeutics.

NORA University Profiles

University of Copenhagen


Research Categories

Main Subject Area

Fields of Research


CC BY-NC 4.0

External sources

Access at Figshare