Article open access publication

C2‐domain containing calcium sensors in neuroendocrine secretion

Journal of Neurochemistry, Wiley, ISSN 0022-3042

Volume 139, 6, 2016

DOI:10.1111/jnc.13865, Dimensions: pub.1036982560, PMID: 27731902,

Affiliations

Organisations

  1. (1) University of Coimbra, grid.8051.c
  2. (2) University of Copenhagen, grid.5254.6, KU

Countries

Portugal

Denmark

Continents

Europe

Description

The molecular mechanisms for calcium-triggered membrane fusion have long been sought for, and detailed models now exist that account for at least some of the functions of the many proteins involved in the process. Key players in the fusion reaction are a group of proteins that, upon binding to calcium, trigger the merger of cargo-filled vesicles with the plasma membrane. Low-affinity, fast-kinetics calcium sensors of the synaptotagmin family - especially synaptotagmin-1 and synaptotagmin-2 - are the main calcium sensors for fast exocytosis triggering in many cell types. Their functions extend beyond fusion triggering itself, having been implicated in the calcium-dependent vesicle recruitment during activity, docking of vesicles to the plasma membrane and priming, and even in post-fusion steps, such as fusion pore expansion and endocytosis. Furthermore, synaptotagmin diversity imparts distinct properties to the release process itself. Other calcium-sensing proteins such as Munc13s and protein kinase C play important, but more indirect roles in calcium-triggered exocytosis. Because of their higher affinity, but intrinsic slower kinetics, they operate on longer temporal and spatial scales to organize assembly of the release machinery. Finally, the high-affinity synaptotagmin-7 and Doc2 (Double C2-domain) proteins are able to trigger membrane fusion in vitro, but cellular measurements in different systems show that they may participate in either fusion or vesicle priming. Here, we summarize the properties and possible interplay of (some of) the major C2-domain containing calcium sensors in calcium-triggered exocytosis. This article is part of a mini review series: "Synaptic Function and Dysfunction in Brain Diseases".

Funders

Research Categories

Main Subject Area

Fields of Research

Links & Metrics

NORA University Profiles

University of Copenhagen

Dimensions Citation Indicators

Times Cited: 29

Field Citation Ratio (FCR): 4.52

Relative Citation ratio (RCR): 1.95

Open Access Info

Bronze