Article open access publication

Tracking developmentally regulated post-synthetic processing of homogalacturonan and chitin using reciprocal oligosaccharide probes

Development, The Company of Biologists, ISSN 0950-1991

Volume 141, 24, 2014

DOI:10.1242/dev.113365, Dimensions: pub.1049701236, PMID: 25395456,

Affiliations

Organisations

  1. (1) University of Copenhagen, grid.5254.6, KU
  2. (2) Department of Plant and Environmental Sciences, University of Copenhagen, Frederiksberg 1871, Denmark Department of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Aas NO-1432, Norway.
  3. (3) Institut Jean-Pierre Bourgin, UMR1318 INRA/AgroParisTech, Saclay Plant Sciences, INRA Centre de Versailles, Versailles 78026, Cedex, France.
  4. (4) Technical University of Denmark, grid.5170.3, DTU
  5. (5) University of Namur, grid.6520.1
  6. (6) Skidmore College, grid.60094.3b

Description

Polysaccharides are major components of extracellular matrices and are often extensively modified post-synthetically to suit local requirements and developmental programmes. However, our current understanding of the spatiotemporal dynamics and functional significance of these modifications is limited by a lack of suitable molecular tools. Here, we report the development of a novel non-immunological approach for producing highly selective reciprocal oligosaccharide-based probes for chitosan (the product of chitin deacetylation) and for demethylesterified homogalacturonan. Specific reciprocal binding is mediated by the unique stereochemical arrangement of oppositely charged amino and carboxy groups. Conjugation of oligosaccharides to fluorophores or gold nanoparticles enables direct and rapid imaging of homogalacturonan and chitosan with unprecedented precision in diverse plant, fungal and animal systems. We demonstrated their potential for providing new biological insights by using them to study homogalacturonan processing during Arabidopsis thaliana root cap development and by analyzing sites of chitosan deposition in fungal cell walls and arthropod exoskeletons.

Research Categories

Main Subject Area

Fields of Research

Links & Metrics

NORA University Profiles

University of Copenhagen

Technical University of Denmark

Dimensions Citation Indicators

Times Cited: 44

Field Citation Ratio (FCR): 9.23

Relative Citation ratio (RCR): 2.38

Open Access Info

Bronze