Article open access publication

Identification of SSEA-1 expressing enhanced reprogramming (SEER) cells in porcine embryonic fibroblasts.

Cell Cycle, Taylor & Francis, ISSN 1551-4005

Volume 16, 11, 2017

DOI:10.1080/15384101.2017.1315490, Dimensions: pub.1085286577, PMC: PMC5499827, PMID: 28426281,



  1. (1) University of Copenhagen, grid.5254.6, KU
  2. (2) b Cardiology Stem Cell Centre , The Heart Centre, Copenhagen University Hospital , Copenhagen , Denmark.
  3. (3) c BioTalentum Ltd. , Gödöllő , Hungary.
  4. (4) d Chief Scientific Officer , Sandor Life Sciences, Sandor Medicaids Group Pvt. Ltd. , Hyderabad , India.
  5. (5) e Danish Dementia Research Centre , Copenhagen University Hospital , Copenhagen , Denmark.
  6. (6) Bioneer (Denmark), grid.424169.c






Previous research has shown that a subpopulation of cells within cultured human dermal fibroblasts, termed multilineage-differentiating stress enduring (Muse) cells, are preferentially reprogrammed into induced pluripotent stem cells. However, controversy exists over whether these cells are the only cells capable of being reprogrammed from a heterogeneous population of fibroblasts. Similarly, there is little research to suggest such cells may exist in embryonic tissues or other species. To address if such a cell population exists in pigs, we investigated porcine embryonic fibroblast populations (pEFs) and identified heterogeneous expression of several key cell surface markers. Strikingly, we discovered a small population of stage-specific embryonic antigen 1 positive cells (SSEA-1+) in Danish Landrace and Göttingen minipig pEFs, which were absent in the Yucatan pEFs. Furthermore, reprogramming of SSEA-1+ sorted pEFs led to higher reprogramming efficiency. Subsequent transcriptome profiling of the SSEA-1+ vs. the SSEA-1neg cell fraction revealed highly comparable gene signatures. However several genes that were found to be upregulated in the SSEA-1+ cells were similarly expressed in mesenchymal stem cells (MSCs). We therefore termed these cells SSEA-1 Expressing Enhanced Reprogramming (SEER) cells. Interestingly, SEER cells were more effective at differentiating into osteocytes and chondrocytes in vitro. We conclude that SEER cells are more amenable for reprogramming and that the expression of mesenchymal stem cell genes is advantageous in the reprogramming process. This data provides evidence supporting the elite theory and helps to delineate which cell types and specific genes are important for reprogramming in the pig.

Research Categories

Main Subject Area

Fields of Research

Links & Metrics

NORA University Profiles

University of Copenhagen

Danish Open Access Indicator

2017: Realized

Research area: Medicine

Danish Bibliometrics Indicator

2017: Level 1

Research area: Medicine

Dimensions Citation Indicators

Times Cited: 2

Field Citation Ratio (FCR): 0.42

Relative Citation ratio (RCR): 0.3

Open Access Info