Article

A kilonova as the electromagnetic counterpart to a gravitational-wave source

Nature, Springer Nature, ISSN 1476-4687

Volume 551, 7678, 2017

DOI:10.1038/nature24303, Dimensions: pub.1092235961, PMID: 29094693,

Authors

Magee, M. (1)
Tonry, J. (7)
Kotak, R. (1)
Agliozzo, C. (12) (13)
Ashall, C. (15)
Bauer, F. E. (12) (17) (18)
Berton, M. (19) (20)
Bulla, M. (16)
Cannizzaro, G. (22) (23)
Cano, Z. (24)
Cikota, A. (25)
Clark, P. (1)
De Cia, A. (25)
Della Valle, M. (21) (26)
Flörs, A. (3) (25) (30)
Hamanowicz, A. (25) (35)
Heintz, K. E. (8) (38)
Izzo, L. (24)
Jonker, P. G. (22) (23)
Klose, S. (36)
Kowalski, M. (31) (42)
Kromer, M. (43) (44)
Nordin, J. (42)
Onori, F. (22) (23)
Patat, F. (25)
Pignata, G. (12) (13)
Pumo, M. L. (47) (49) (50)
Rau, A. (2)
Razza, A (14) (28)
Rest, A. (51) (52)
Roy, R (16) (53)
Ruiter, A. J. (54) (55) (56)
Seitenzahl, I. R. (55) (56)
Smith, M. (6)
Taddia, F. (16)
Taubenberger, S. (3) (25)
Terreran, G. (47) (60)
Vos, J. (39)
Yaron, O. (9)

* Corresponding author

Affiliations

Organisations

  1. (1) Queen's University Belfast, grid.4777.3
  2. (2) Max Planck Institute for Extraterrestrial Physics, grid.450265.0
  3. (3) Max Planck Institute for Astrophysics, grid.452596.9
  4. (4) LIGO Laboratory West Bridge, Room 257 California Institute of Technology, MC 100-3691125, Pasadena, California, USA
  5. (5) University College Dublin, grid.7886.1
  6. (6) University of Southampton, grid.5491.9
  7. (7) University of Hawaii at Manoa, grid.410445.0
  8. (8) University of Copenhagen, grid.5254.6, KU
  9. (9) Weizmann Institute of Science, grid.13992.30
  10. (10) University of Warwick, grid.7372.1
  11. (11) University of Edinburgh, grid.4305.2
  12. (12) Millennium Institute of Astrophysics, grid.450287.c
  13. (13) Andrés Bello University, grid.412848.3
  14. (14) European Southern Observatory, grid.440369.c
  15. (15) Liverpool John Moores University, grid.4425.7
  16. (16) Stockholm University, grid.10548.38
  17. (17) Pontifical Catholic University of Chile, grid.7870.8
  18. (18) Space Science Institute, grid.296797.4
  19. (19) INAF — Osservatorio Astronomico di Brera, via E. Bianchi 46, 23807, Merate, Italy
  20. (20) University of Padua, grid.5608.b
  21. (21) INAF — Osservatorio Astronomico di Capodimonte, via Salita Moiariello 16, 80131, Napoli, Italy
  22. (22) Netherlands Institute for Space Research, grid.451248.e
  23. (23) Radboud University Nijmegen, grid.5590.9
  24. (24) Instituto de Astrofísica de Andalucía, grid.450285.e
  25. (25) European Southern Observatory, grid.424907.c
  26. (26) ICRANet-Pescara, Piazza della Repubblica 10, I-65122, Pescara, Italy
  27. (27) Sorbonne University, grid.462844.8
  28. (28) University of Chile, grid.443909.3
  29. (29) National Institute for Astrophysics, grid.4293.c
  30. (30) Technical University of Munich, grid.6936.a
  31. (31) DESY, grid.7683.a
  32. (32) University of Portsmouth, grid.4701.2
  33. (33) University of Pittsburgh, grid.21925.3d
  34. (34) University of Lisbon, grid.9983.b
  35. (35) University of Warsaw, grid.12847.38
  36. (36) Thüringer Landessternwarte Tautenburg, grid.440503.6
  37. (37) University of Turku, grid.1374.1
  38. (38) University of Iceland, grid.14013.37
  39. (39) University of Valparaíso, grid.412185.b
  40. (40) University of Cambridge, grid.5335.0
  41. (41) Lancaster University, grid.9835.7
  42. (42) Humboldt University of Berlin, grid.7468.d
  43. (43) Heidelberg Institute for Theoretical Studies, grid.424699.4
  44. (44) Heidelberg University, grid.7700.0
  45. (45) Max Planck Institute for Astronomy, grid.429508.2
  46. (46) Sorbonne Universités, UPMC Université Paris 6 and CNRS, UMR 7095, Institut d’Astrophysique de Paris, 98 bis boulevard Arago, 75014, Paris, France
  47. (47) Osservatorio Astronomico di Padova, grid.436939.2
  48. (48) University of Oxford, grid.4991.5
  49. (49) INFN-Laboratori Nazionali del Sud, Via Santa Sofia 62, 95123, Catania, Italy
  50. (50) University of Catania, grid.8158.4
  51. (51) Johns Hopkins University, grid.21107.35
  52. (52) Space Telescope Science Institute, grid.419446.a
  53. (53) Inter-University Centre for Astronomy and Astrophysics, grid.249801.6
  54. (54) ARC Centre of Excellence for All-sky Astrophysics (CAASTRO)
  55. (55) Australian National University, grid.1001.0
  56. (56) UNSW Sydney, grid.1005.4
  57. (57) LSST, 950 North Cherry Avenue, 85719, Tucson, Arizona, USA
  58. (58) Harvard University, grid.38142.3c
  59. (59) University of the Free State, grid.412219.d
  60. (60) Northwestern University, grid.16753.36
  61. (61) University of Minnesota, grid.17635.36

Description

Gravitational waves were discovered with the detection of binary black-hole mergers and they should also be detectable from lower-mass neutron-star mergers. These are predicted to eject material rich in heavy radioactive isotopes that can power an electromagnetic signal. This signal is luminous at optical and infrared wavelengths and is called a kilonova. The gravitational-wave source GW170817 arose from a binary neutron-star merger in the nearby Universe with a relatively well confined sky position and distance estimate. Here we report observations and physical modelling of a rapidly fading electromagnetic transient in the galaxy NGC 4993, which is spatially coincident with GW170817 and with a weak, short γ-ray burst. The transient has physical parameters that broadly match the theoretical predictions of blue kilonovae from neutron-star mergers. The emitted electromagnetic radiation can be explained with an ejected mass of 0.04 ± 0.01 solar masses, with an opacity of less than 0.5 square centimetres per gram, at a velocity of 0.2 ± 0.1 times light speed. The power source is constrained to have a power-law slope of -1.2 ± 0.3, consistent with radioactive powering from r-process nuclides. (The r-process is a series of neutron capture reactions that synthesise many of the elements heavier than iron.) We identify line features in the spectra that are consistent with light r-process elements (atomic masses of 90-140). As it fades, the transient rapidly becomes red, and a higher-opacity, lanthanide-rich ejecta component may contribute to the emission. This indicates that neutron-star mergers produce gravitational waves and radioactively powered kilonovae, and are a nucleosynthetic source of the r-process elements.

Funders

Research Categories

Main Subject Area

Fields of Research

Links & Metrics

NORA University Profiles

University of Copenhagen

Danish Open Access Indicator

2017: Unused

Research area: Science & Technology

Danish Bibliometrics Indicator

2017: Level 2

Research area: Science & Technology

Dimensions Citation Indicators

Times Cited: 260

Field Citation Ratio (FCR): 119.43

Relative Citation ratio (RCR): 1.18