Article open access publication

Tools for studying growth patterns and chemical dynamics of aggregated Pseudomonas aeruginosa exposed to different electron acceptors in an alginate bead model

npj Biofilms and Microbiomes, Springer Nature, ISSN 2055-5008

Volume 4, 1, 2018

DOI:10.1038/s41522-018-0047-4, Dimensions: pub.1101045815, PMC: PMC5818519, PMID: 29479470,

Affiliations

Organisations

  1. (1) University of Copenhagen, grid.5254.6, KU
  2. (2) University of Cambridge, grid.5335.0
  3. (3) Department of Clinical Microbiology 9301, Copenhagen University Hospital, Rigshospitalet, Juliane Maries Vej 22, Copenhagen, Denmark
  4. (4) University of Technology Sydney, grid.117476.2

Description

In chronic infections, bacterial pathogens typically grow as small dense cell aggregates embedded in a matrix consisting of, e.g., wound bed sludge or lung mucus. Such biofilm growth mode exhibits extreme tolerance towards antibiotics and the immune defence system. The bacterial aggregates are exposed to physiological heterogeneity and O2 limitation due to steep chemical gradients through the matrix, which is are hypothesised to contribute to antibiotic tolerance. Using a novel combination of microsensor and bioimaging analysis, we investigated growth patterns and chemical dynamics of the pathogen Pseudomonas aeruginosa in an alginate bead model, which mimics growth in chronic infections better than traditional biofilm experiments in flow chambers. Growth patterns were strongly affected by electron acceptor availability and the presence of chemical gradients, where the combined presence of O2 and nitrate yielded highest bacterial growth by combined aerobic respiration and denitrification.

Funders

Research Categories

Main Subject Area

Fields of Research

Links & Metrics

NORA University Profiles

University of Copenhagen

Danish Open Access Indicator

2018: Realized

Research area: Science & Technology

Dimensions Citation Indicators

Times Cited: 15

Field Citation Ratio (FCR): 6.06

Relative Citation ratio (RCR): 1.82

Open Access Info

Pure Gold