Tight-Binding Approximation-Enhanced Global Optimization.

Journal of Chemical Theory and Computation, American Chemical Society (ACS), ISSN 1549-9618

Volume 14, 5, 2018

DOI:10.1021/acs.jctc.8b00039, Dimensions: pub.1101820365, PMID: 29589928,



  1. (1) Brown University, grid.40263.33
  2. (2) University of Iceland, grid.14013.37
  3. (3) Chalmers University of Technology, grid.5371.0
  4. (4) Aarhus University, grid.7048.b, AU


Solving and predicting atomic structures from first-principles methodologies is limited by the computational cost of exploring the search space, even when relatively inexpensive density functionals are used. Here, we present an efficient approach where the search is performed using density functional tight-binding, with an automatic adaptive parametrization scheme for the repulsive pair potentials. We successfully apply the method to the genetic algorithm optimization of bulk carbon, titanium dioxide, palladium oxide, and calcium hydroxide, and we assess the stability of the unknown crystal structure of palladium hydroxide.


Links & Metrics

NORA University Profiles

Aarhus University

Danish Open Access Indicator

2018: Blocked

Research area: Science & Technology

Danish Bibliometrics Indicator

2018: Level 2

Research area: Science & Technology

Dimensions Citation Indicators

Times Cited: 10

Field Citation Ratio (FCR): 3.68

Relative Citation ratio (RCR): 0.81